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Lecture 4 – Local Search



  

Outline

● Problems with ‘non-path’ solutions
● Local search algorithms
● State space landscape
● Hill-climbing search
● Stochastic hill-climbing
● Simulated annealing
● Genetic algorithms



  

Problem Definition

● A search problem is defined by:
● a state space (i.e., an initial state or set of initial 

states and a set of operators)
● a set of goal states (listed explicitly or given 

implicitly by means of a test that can be applied to a 
state to determine if it is a goal state)

● A solution is a path in the state space from an 
initial state to a goal state



  

‘Non-path’ Solutions

● For many problems, the path to the goal is irrelevant, 
e.g., VLSI design, job-shop scheduling, portfolio 
management

● In such problems the goal state is unknown:
● goal is specified in the form of a function which assigns a 

(numerical) value to each state
● aim is to minimise (or maximise) this value
● the minimum (or maximum) possible value may not be 

known in advance (optimisation problems)

● The solution is the goal state rather than the path to 
the goal state



  

Revised Problem Definition

● A local search problem is defined by:
● a state space, i.e., an initial state or set of initial 

states and a set of operators)
● a set of goal states given implicitly

– by means of a test that can be applied to a state to 
determine if it is a goal state; or

– in the form of an objective function to be minimised or 
maximised

● A solution is a goal state



  

Example: Eight Queens Problem

● Goal is to place eight queens on an (otherwise empty) 
chess board so that they can’t take each other
● a queen can take another queen in the same row, column or 

diagonal
● the order in which the queens are placed is not of interest, only 

their final positions

● Since a queen can take another queen in the same 
column, the problem is often formulated as one of 
choosing the row for a queen in each column

● Example of a constraint satisfaction problem



  

Example: Eight Queens Problem



  

Local Search Algorithms

● Local search algorithms consider only one state (or 
a small number of states) at a time

● After applying operators to the current state, a new 
current state is chosen from its successors which 
replaces the current state

● Search is not systematic
● Path followed by the search are not retained
● Uses very little memory (usually a constant amount)
● Well suited to problems where the path to the 

solution doesn’t matter



  

State-Space Landscape

● Rather than paths in the state space, we have 
points (or sets of points), each with an associated 
value

● Value is often visualised as the “elevation” of a 
point in a state space landscape

● If elevation corresponds to cost, the aim is to find 
lowest point in this landscape - a global minimum

● If elevation corresponds to solution quality, the 
aim is find the highest point - a global maximum



  

Example: State-Space Landscape



  

Completeness and Optimality

● Local search algorithms explore this landscape
● A complete local search algorithm always finds 

a solution if one exits
● An optimal algorithm always find a global 

minimum / maximum



  

Hill-climbing Search

● Expands the initial state s and chooses the best of its 
successors s' (if there is more than one best successor, 
choose one at random)

● s' replaces s as the current state and is expanded in turn

● If none of the successors of are better (lower cost or higher 
quality) than the current state, the algorithm halts

● Follows the steepest gradient down (or up) hill from the initial 
state until no improvement is possible

● Only remembers the current state and its value



  

Example: Eight Queens

● Local search algorithms typically use a complete state 
formulation, e.g., in the eight queens problem, each state 
might have eight queens on the board, one per column

● Operators return all possible states generated by moving 
a single queen to another square in the same column (so 
each state has 8 x 7 = 56 successors)

● The cost function is the number of pairs of queens that 
can take each other

● Global minimum is zero, when no queen can take any 
other queen



  

Example: Eight Queens

● Current cost is 17
● Values show the cost of 

each possible successor 
obtained by moving a 
queen to square 
indicated

● The best moves (value 
12) are marked

● One of these is chosen 
and the process repeats



  

Example: Eight Queens

● Current cost is 1 (i.e, 
one pair of queens 
can take each other)

● Every successor has 
a higher cost, so the 
search terminates

● This is called a local 
minimum in the state 
space landscape



  

State, SearchProblem & Node

// class representing a problem state

class State

// class representing a search problem

class SearchProblem {

    // methods: initialState() and operators()

    // Note: initialState may be chosen randomly

}

// class representing a search node

class Node {

    // methods: state(), cost(), expand()

}



  

Hill-climbing Algorithm

// pseudocode implementing hill­climbing search

public Node HillClimbingSearch(SearchProblem problem) {

Node currentState = new Node(problem.initialState())

Node bestSuccessorState

while(true) {

bestSuccessorState =

    Collections.sort(currentState.expand(problem.operators()),

                                 CostComparator).removeFirst()

if (bestSuccessorState.cost() < currentState.cost()) then {

currentState = bestSuccessorState

} else {

return currentState

}

}

}



  

Limitations of Hill-climbing

● Hill-climbing search often makes rapid progress towards a 
solution - usually easy to improve a bad state

● However it relies on the state space landscape sloping 
continuously down (or up) to a goal state

● If it doesn’t, hill-climbing often gets stuck:
● in local minima (or maxima) - points that are lower than each of their 

neighbouring states, but higher than the global minimum
● on plateaus - a set of points with the same elevation

● Hill-climbing is therefore neither complete nor optimal



  

Variants of Hill-climbing Search

● To escape local minima and plateaus, a number of variants of 
hill-climbing have been developed

● Sideways moves: allowing a limited number of moves to states 
which are no worse than the current state, in the hope that these will 
take the algorithm to the edge of a shoulder/plateau

● First choice hill climbing: generating successors randomly until 
one is found that is better than the current state (useful if a state has 
thousands of successors)

● Stochastic hill climbing: choose at random among the best moves

● While these can increase the number of solutions found, they 
typically require more operator applications to find a solution 
and are still incomplete



  

Stochastic Hill-climbing

● Choose at random from among the best moves (may 
include states which are no worse than the current state)

● Probability of choosing a given move may be
● 1/n where n is the number of good moves
● proportional to the gradient, i.e., better moves have higher 

probability of being chosen

● Search terminates when a (local) optimum is found or after 
a given number of steps

● Typically takes longer to converge on a solution than simple 
hill-climbing, but finds better solutions in some state space 
landscapes



  

Stochastic Hill-climbing Algorithm

// pseudocode implementing stochastic hill­climbing search

public Node StochasticHillClimbingSearch(SearchProblem problem) {

Node currentState = new Node(problem.initialState())

Node successorState

while(true) {

LinkedList<Node> nodes = Collections.sort(currentState.expand(problem.operators()).     
                                           add(currentState), CostComparator)

int c = nodes.indexOf(currentState)

succssorState = nodes.subList(0, c).shuffle().removeFirst()

if (successorState.cost() < currentState.cost()) then {

currentState = successorState

} else {

return currentState

}

}

}



  

Random Restart Hill-climbing 
Search

● Performs a series of hill-climbing (or stochastic hill-
climbing) searches from randomly generated initial states

● Each search terminates when a local optimum is found, 
when no discernable progress has been made for k steps 
(stochastic hill-climbing), or after a fixed number of steps

● Saves the best result found so far from any of the 
searches

● Can use either a fixed number of restarts or continue until 
the best result has not been improved for a certain 
number of restarts



  

Properties of Random Restart 
Hill-climbing

● Complete with probability approaching 1 (given enough 
restarts)

● If each hill-climbing search has probability p of success, 
the expected number of restarts required is 1/p
● e.g., starting from a randomly generated eight queens state, 

steepest descent hill-climbing gets stuck about 86% of the 
time

● p ≈ 0.14 so we need approximately 7 restarts to find a goal 
state

● However we may not know the probability of success for 
a hill-climbing search



  

Properties of Random Restart 
Hill-climbing

● If there are few local minima/maxima or plateaus, 
random restart hill climbing will find a good solution 
very quickly

● NP-hard problems typically have an exponential 
number of local minima/maxima for the search to get 
stuck on

● Despite this, a reasonably good solution can often be 
found after a small number of restarts

● Can be more effective to limit the number of steps in 
each hill-climbing search and perform more searches



  

Simulated Annealing Search

● Rather than restarting when stuck at a local optimum, 
simulated annealing allows moves to states which are worse 
than the current state

● Picks a move from the current state at random
● if the resulting state is better than the current state the move is 

accepted
● otherwise the move is made with a probability which decreases 

exponentially with the badness of the move and the “temperature”, T

● Probability of making moves to states which are worse than 
the current state declines as the search progresses - controlled 
by the annealing schedule

● Search terminates when T = 0



  

Simulated Annealing Algorithm

// pseudocode implementing simulated annealing search

public Node SimulatedAnnealingSearch(SearchProblem problem) {

Node currentState = new Node(problem.initialState())

Node successorState

while(T > 0) {

LinkedList<Node> nodes = currentState.expand(problem.operators())

succssorState = nodes.shuffle().removeFirst()

if (successorState.cost() < currentState.cost()) then {

currentState = successorState

} else{

// Replace currentState with successorState with probability

// e**(­(successorState.cost() – currentState.cost())/T)

}

// Decrement T according to the annealing schedule

}

}



  

Properties of Simulated Annealing

● If the annealing schedule lowers T slowly 
enough, simulated annealing is complete and 
optimal

● However finding an optimal (or even a very 
good) solution may take a long time

● Simulated annealing has been used to solve 
VLSI design problems, factory scheduling and 
other large-scale optimisation problems



  

Genetic Algorithms

● Inspired by natural selection
● Considers a set of k states (‘population’) at a time rather 

than a single current state
● Starts with a set of k randomly generated initial states
● Combines (parts of) states (‘individuals’) in the population 

to produce new states (‘offspring’)
● Offspring may either replace the current population, or 

the best of the offspring may replace the worst of the 
current population

● Algorithm halts when either the goal is found or after a 
given number of iterations (‘generations’)



  

State Representation and 
Evaluation

● Individuals are represented as strings over a finite 
alphabet - usually {0,1}, e.g., states in the eight 
queens problem can be encoded in 24 bits

● The value of each individual is computed using a 
fitness function which returns higher values for better 
states, e.g, the number of non attacking queens

● k pairs of individuals are then selected to ‘reproduce’ 
- probability of selection is often taken to be 
proportional to the fitness value

● Some individuals may be selected multiple times and 
some not at all



  

Crossover and Mutation

● For each pair, a crossover point is randomly chosen from the 
positions in the string

● Offspring are then created by crossing over the parent 
strings at the crossover point, e.g. the first child gets the first 
3 digits from the first parent and the remaining digits from the 
second parent

● Each location in the offspring is subject to random mutation 
with a small probability

● The offspring combines part solutions from each parent and 
possibly some variation

● (Some of) the offspring then replace (some of) the parent 
population and the next generation begins



  

Example: Eight Queens GA



  

Example: Eight Queens Crossover



  

Properties of Genetic Algorithms

● Key advantage of GAs is the crossover operation

● Useful information can be passed between k different solutions

● If the initial population is random, GAs (like simulated annealing) 
make large moves in the state space initially, and smaller moves later 
on when the individuals are quite similar

● Intuitively crossover combines substrings which have evolved 
independently to solve parts of the problem, raising the granularity of 
the search (schema theory)

● GAs work best when schemas correspond to meaningful components 
of the solution - requires careful engineering of the representation



  

Summary

● Unlike (some) uninformed search techniques, local 
search techniques are usually incomplete in practice

● However they can successfully be applied to 
problems which are too large for systematic search 
techniques (uninformed or informed), e.g, where the 
number of operators is large

● Often capable of finding good solutions in a 
reasonable amount of time

● GAs are often out-performed by simpler stochastic 
hill-climbing techniques
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