Artificial Intelligence

Lecture 4 – Local Search

Outline

- Problems with 'non-path' solutions
- Local search algorithms
- State space landscape
- Hill-climbing search
- Stochastic hill-climbing
- Simulated annealing
- Genetic algorithms

Problem Definition

- A *search* problem is defined by:
 - a *state space* (i.e., an initial state or set of initial states and a set of operators)
 - a set of goal states (listed explicitly or given implicitly by means of a test that can be applied to a state to determine if it is a goal state)
- A *solution* is a path in the state space from an initial state to a goal state

'Non-path' Solutions

- For many problems, the *path* to the goal is irrelevant, e.g., VLSI design, job-shop scheduling, portfolio management
- In such problems the goal state is unknown:
 - goal is specified in the form of a *function* which assigns a (numerical) value to each state
 - aim is to minimise (or maximise) this value
 - the minimum (or maximum) possible value may not be known in advance (optimisation problems)
- The solution *is* the goal state rather than the path to the goal state

Revised Problem Definition

- A *local search problem* is defined by:
 - a *state space*, i.e., an initial state or set of initial states and a set of operators)
 - a set of goal states given implicitly
 - by means of a test that can be applied to a state to determine if it is a goal state; or
 - in the form of an objective function to be minimised or maximised
- A solution is a goal state

Example: Eight Queens Problem

- Goal is to place eight queens on an (otherwise empty) chess board so that they can't take each other
 - a queen can take another queen in the same row, column or diagonal
 - the order in which the queens are placed is not of interest, only their final positions
- Since a queen can take another queen in the same column, the problem is often formulated as one of choosing the row for a queen in each column
- Example of a *constraint satisfaction problem*

Example: Eight Queens Problem

Local Search Algorithms

- Local search algorithms consider only one state (or a small number of states) at a time
- After applying operators to the current state, a new current state is chosen from its successors which *replaces* the current state
- Search is not systematic
- Path followed by the search are not retained
- Uses very little memory (usually a constant amount)
- Well suited to problems where the path to the solution doesn't matter

State-Space Landscape

- Rather than paths in the state space, we have points (or sets of points), each with an associated value
- Value is often visualised as the "elevation" of a point in a state space landscape
- If elevation corresponds to *cost*, the aim is to find lowest point in this landscape - a global *minimum*
- If elevation corresponds to solution *quality*, the aim is find the highest point a global *maximum*

Example: State-Space Landscape

Completeness and Optimality

- Local search algorithms explore this landscape
- A *complete* local search algorithm always finds a solution if one exits
- An optimal algorithm always find a global minimum / maximum

Hill-climbing Search

- Expands the initial state s and chooses the best of its successors s' (if there is more than one best successor, choose one at random)
- *s'* replaces *s* as the current state and is expanded in turn
- If none of the successors of are better (lower cost or higher quality) than the current state, the algorithm halts
- Follows the steepest gradient down (or up) hill from the initial state until no improvement is possible
- Only remembers the current state and its value

Example: Eight Queens

- Local search algorithms typically use a complete state formulation, e.g., in the eight queens problem, each state might have eight queens on the board, one per column
- Operators return all possible states generated by moving a single queen to another square in the same column (so each state has 8 x 7 = 56 successors)
- The *cost* function is the number of pairs of queens that can take each other
- Global *minimum* is zero, when no queen can take any other queen

Example: Eight Queens

- Current cost is 17
- Values show the cost of each possible successor obtained by moving a queen to square indicated
- The best moves (value 12) are marked
- One of these is chosen and the process repeats

18	12	14	13	13	12	14	14
14	16	13	15	12	14	12	16
14	12	18	13	15	12	14	14
15	14	14	嬱	13	16	13	16
¥	14	17	15	⊻	14	16	16
17	Ŵ	16	18	15	⊻	15	Ŵ
18	14	Ŵ	15	15	14	Ŵ	16
14	14	13	17	12	14	12	18

Example: Eight Queens

- Current cost is 1 (i.e, one pair of queens can take each other)
- Every successor has a higher cost, so the search terminates
- This is called a *local minimum* in the state space landscape

State, SearchProblem & Node

// class representing a problem state
class State

```
// class representing a search problem
class SearchProblem {
    // methods: initialState() and operators()
    // Note: initialState may be chosen randomly
}
// class representing a search node
```

```
class Node {
```

}

```
// methods: state(), cost(), expand()
```

Hill-climbing Algorithm

```
// pseudocode implementing hill-climbing search
public Node HillClimbingSearch(SearchProblem problem) {
   Node currentState = new Node(problem.initialState())
   Node bestSuccessorState
```

```
while(true) {
```

```
bestSuccessorState =
```

Collections.sort(currentState.expand(problem.operators()),

```
CostComparator).removeFirst()
```

```
if (bestSuccessorState.cost() < currentState.cost()) then {</pre>
```

```
currentState = bestSuccessorState
```

```
} else {
```

```
return currentState
```

```
}
}
```

Limitations of Hill-climbing

- Hill-climbing search often makes rapid progress towards a solution - usually easy to improve a bad state
- However it relies on the state space landscape sloping continuously down (or up) to a goal state
- If it doesn't, hill-climbing often gets stuck:
 - in *local minima* (or maxima) points that are lower than each of their neighbouring states, but higher than the global minimum
 - on *plateaus* a set of points with the same elevation
- Hill-climbing is therefore *neither complete* nor *optimal*

Variants of Hill-climbing Search

- To escape local minima and plateaus, a number of variants of hill-climbing have been developed
 - **Sideways moves**: allowing a limited number of moves to states which are no worse than the current state, in the hope that these will take the algorithm to the edge of a shoulder/plateau
 - **First choice hill climbing**: generating successors randomly until one is found that is better than the current state (useful if a state has thousands of successors)
 - **Stochastic hill climbing**: choose at random among the best moves
- While these can increase the number of solutions found, they typically require more operator applications to find a solution and are still incomplete

Stochastic Hill-climbing

- Choose at random from among the best moves (may include states which are no worse than the current state)
- Probability of choosing a given move may be
 - 1/*n* where *n* is the number of good moves
 - proportional to the gradient, i.e., better moves have higher probability of being chosen
- Search terminates when a (local) optimum is found or after a given number of steps
- Typically takes longer to converge on a solution than simple hill-climbing, but finds better solutions in some state space landscapes

Stochastic Hill-climbing Algorithm

// pseudocode implementing stochastic hill-climbing search

```
public Node StochasticHillClimbingSearch(SearchProblem problem) {
```

```
Node currentState = new Node(problem.initialState())
```

```
Node successorState
```

```
while(true) {
```

}

}

```
int c = nodes.indexOf(currentState)
succssorState = nodes.subList(0, c).shuffle().removeFirst()
if (successorState.cost() < currentState.cost()) then {
    currentState = successorState
} else {
    return currentState
}</pre>
```

Random Restart Hill-climbing Search

- Performs a series of hill-climbing (or stochastic hillclimbing) searches from randomly generated initial states
- Each search terminates when a *local optimum* is found, when no discernable progress has been made for *k* steps (stochastic hill-climbing), or after a fixed number of steps
- Saves the best result found so far from any of the searches
- Can use either a fixed number of restarts or continue until the best result has not been improved for a certain number of restarts

Properties of Random Restart Hill-climbing

- Complete with probability approaching 1 (given enough restarts)
- If each hill-climbing search has probability p of success, the expected number of restarts required is 1/p
 - e.g., starting from a randomly generated eight queens state, steepest descent hill-climbing gets stuck about 86% of the time
 - *p* ≈ 0.14 so we need approximately 7 restarts to find a goal state
- However we may not know the probability of success for a hill-climbing search

Properties of Random Restart Hill-climbing

- If there are few local minima/maxima or plateaus, random restart hill climbing will find a good solution very quickly
- NP-hard problems typically have an exponential number of local minima/maxima for the search to get stuck on
- Despite this, a *reasonably good* solution can often be found after a small number of restarts
- Can be more effective to limit the number of steps in each hill-climbing search and perform more searches

Simulated Annealing Search

- Rather than restarting when stuck at a local optimum, simulated annealing allows moves to states which are worse than the current state
- Picks a move from the current state at random
 - if the resulting state is better than the current state the move is accepted
 - otherwise the move is made with a probability which decreases exponentially with the badness of the move and the "temperature", *T*
- Probability of making moves to states which are worse than the current state declines as the search progresses - controlled by the *annealing schedule*
- Search terminates when T = 0

Simulated Annealing Algorithm

```
// pseudocode implementing simulated annealing search
public Node SimulatedAnnealingSearch(SearchProblem problem) {
   Node currentState = new Node(problem.initialState())
   Node successorState
   while(T > 0) {
```

```
LinkedList<Node> nodes = currentState.expand(problem.operators())
succssorState = nodes.shuffle().removeFirst()
if (successorState.cost() < currentState.cost()) then {
    currentState = successorState
} else{
    // Replace currentState with successorState with probability
    // e**(-(successorState.cost() - currentState.cost())/T)
}
// Decrement T according to the annealing schedule
}</pre>
```

}

Properties of Simulated Annealing

- If the annealing schedule lowers T slowly enough, simulated annealing is *complete* and *optimal*
- However finding an optimal (or even a very good) solution may take a *long* time
- Simulated annealing has been used to solve VLSI design problems, factory scheduling and other large-scale optimisation problems

Genetic Algorithms

- Inspired by natural selection
- Considers a set of k states ('population') at a time rather than a single current state
- Starts with a set of *k* randomly generated initial states
- Combines (parts of) states ('individuals') in the population to produce new states ('offspring')
- Offspring may either replace the current population, or the best of the offspring may replace the worst of the current population
- Algorithm halts when either the goal is found or after a given number of iterations ('generations')

State Representation and Evaluation

- Individuals are represented as strings over a finite alphabet - usually {0,1}, e.g., states in the eight queens problem can be encoded in 24 bits
- The value of each individual is computed using a *fitness function* which returns higher values for better states, e.g, the number of non attacking queens
- *k* pairs of individuals are then selected to 'reproduce'
 probability of selection is often taken to be proportional to the fitness value
- Some individuals may be selected multiple times and some not at all

Crossover and Mutation

- For each pair, a *crossover point* is randomly chosen from the positions in the string
- Offspring are then created by crossing over the parent strings at the crossover point, e.g. the first child gets the first 3 digits from the first parent and the remaining digits from the second parent
- Each location in the offspring is subject to random *mutation* with a small probability
- The offspring combines part solutions from each parent and possibly some variation
- (Some of) the offspring then replace (some of) the parent population and the next generation begins

Example: Eight Queens GA

Example: Eight Queens Crossover

Properties of Genetic Algorithms

- Key advantage of GAs is the crossover operation
- Useful information can be passed between *k* different solutions
- If the initial population is random, GAs (like simulated annealing) make large moves in the state space initially, and smaller moves later on when the individuals are quite similar
- Intuitively crossover combines substrings which have evolved independently to solve parts of the problem, raising the granularity of the search (*schema theory*)
- GAs work best when schemas correspond to meaningful components of the solution - requires careful engineering of the representation

Summary

- Unlike (some) uninformed search techniques, local search techniques are usually *incomplete* in practice
- However they can successfully be applied to problems which are too large for systematic search techniques (uninformed or informed), e.g, where the number of operators is large
- Often capable of finding good solutions in a reasonable amount of time
- GAs are often out-performed by simpler stochastic hill-climbing techniques