

Artificial Intelligence

Lecture 4 – Local Search

Outline

● Problems with ‘non-path’ solutions
● Local search algorithms
● State space landscape
● Hill-climbing search
● Stochastic hill-climbing
● Simulated annealing
● Genetic algorithms

Problem Definition

● A search problem is defined by:
● a state space (i.e., an initial state or set of initial

states and a set of operators)
● a set of goal states (listed explicitly or given

implicitly by means of a test that can be applied to a
state to determine if it is a goal state)

● A solution is a path in the state space from an
initial state to a goal state

‘Non-path’ Solutions

● For many problems, the path to the goal is irrelevant,
e.g., VLSI design, job-shop scheduling, portfolio
management

● In such problems the goal state is unknown:
● goal is specified in the form of a function which assigns a

(numerical) value to each state
● aim is to minimise (or maximise) this value
● the minimum (or maximum) possible value may not be

known in advance (optimisation problems)

● The solution is the goal state rather than the path to
the goal state

Revised Problem Definition

● A local search problem is defined by:
● a state space, i.e., an initial state or set of initial

states and a set of operators)
● a set of goal states given implicitly

– by means of a test that can be applied to a state to
determine if it is a goal state; or

– in the form of an objective function to be minimised or
maximised

● A solution is a goal state

Example: Eight Queens Problem

● Goal is to place eight queens on an (otherwise empty)
chess board so that they can’t take each other
● a queen can take another queen in the same row, column or

diagonal
● the order in which the queens are placed is not of interest, only

their final positions

● Since a queen can take another queen in the same
column, the problem is often formulated as one of
choosing the row for a queen in each column

● Example of a constraint satisfaction problem

Example: Eight Queens Problem

Local Search Algorithms

● Local search algorithms consider only one state (or
a small number of states) at a time

● After applying operators to the current state, a new
current state is chosen from its successors which
replaces the current state

● Search is not systematic
● Path followed by the search are not retained
● Uses very little memory (usually a constant amount)
● Well suited to problems where the path to the

solution doesn’t matter

State-Space Landscape

● Rather than paths in the state space, we have
points (or sets of points), each with an associated
value

● Value is often visualised as the “elevation” of a
point in a state space landscape

● If elevation corresponds to cost, the aim is to find
lowest point in this landscape - a global minimum

● If elevation corresponds to solution quality, the
aim is find the highest point - a global maximum

Example: State-Space Landscape

Completeness and Optimality

● Local search algorithms explore this landscape
● A complete local search algorithm always finds

a solution if one exits
● An optimal algorithm always find a global

minimum / maximum

Hill-climbing Search

● Expands the initial state s and chooses the best of its
successors s' (if there is more than one best successor,
choose one at random)

● s' replaces s as the current state and is expanded in turn

● If none of the successors of are better (lower cost or higher
quality) than the current state, the algorithm halts

● Follows the steepest gradient down (or up) hill from the initial
state until no improvement is possible

● Only remembers the current state and its value

Example: Eight Queens

● Local search algorithms typically use a complete state
formulation, e.g., in the eight queens problem, each state
might have eight queens on the board, one per column

● Operators return all possible states generated by moving
a single queen to another square in the same column (so
each state has 8 x 7 = 56 successors)

● The cost function is the number of pairs of queens that
can take each other

● Global minimum is zero, when no queen can take any
other queen

Example: Eight Queens

● Current cost is 17
● Values show the cost of

each possible successor
obtained by moving a
queen to square
indicated

● The best moves (value
12) are marked

● One of these is chosen
and the process repeats

Example: Eight Queens

● Current cost is 1 (i.e,
one pair of queens
can take each other)

● Every successor has
a higher cost, so the
search terminates

● This is called a local
minimum in the state
space landscape

State, SearchProblem & Node

// class representing a problem state

class State

// class representing a search problem

class SearchProblem {

 // methods: initialState() and operators()

 // Note: initialState may be chosen randomly

}

// class representing a search node

class Node {

 // methods: state(), cost(), expand()

}

Hill-climbing Algorithm

// pseudocode implementing hill­climbing search

public Node HillClimbingSearch(SearchProblem problem) {

Node currentState = new Node(problem.initialState())

Node bestSuccessorState

while(true) {

bestSuccessorState =

 Collections.sort(currentState.expand(problem.operators()),

 CostComparator).removeFirst()

if (bestSuccessorState.cost() < currentState.cost()) then {

currentState = bestSuccessorState

} else {

return currentState

}

}

}

Limitations of Hill-climbing

● Hill-climbing search often makes rapid progress towards a
solution - usually easy to improve a bad state

● However it relies on the state space landscape sloping
continuously down (or up) to a goal state

● If it doesn’t, hill-climbing often gets stuck:
● in local minima (or maxima) - points that are lower than each of their

neighbouring states, but higher than the global minimum
● on plateaus - a set of points with the same elevation

● Hill-climbing is therefore neither complete nor optimal

Variants of Hill-climbing Search

● To escape local minima and plateaus, a number of variants of
hill-climbing have been developed

● Sideways moves: allowing a limited number of moves to states
which are no worse than the current state, in the hope that these will
take the algorithm to the edge of a shoulder/plateau

● First choice hill climbing: generating successors randomly until
one is found that is better than the current state (useful if a state has
thousands of successors)

● Stochastic hill climbing: choose at random among the best moves

● While these can increase the number of solutions found, they
typically require more operator applications to find a solution
and are still incomplete

Stochastic Hill-climbing

● Choose at random from among the best moves (may
include states which are no worse than the current state)

● Probability of choosing a given move may be
● 1/n where n is the number of good moves
● proportional to the gradient, i.e., better moves have higher

probability of being chosen

● Search terminates when a (local) optimum is found or after
a given number of steps

● Typically takes longer to converge on a solution than simple
hill-climbing, but finds better solutions in some state space
landscapes

Stochastic Hill-climbing Algorithm

// pseudocode implementing stochastic hill­climbing search

public Node StochasticHillClimbingSearch(SearchProblem problem) {

Node currentState = new Node(problem.initialState())

Node successorState

while(true) {

LinkedList<Node> nodes = Collections.sort(currentState.expand(problem.operators()).
 add(currentState), CostComparator)

int c = nodes.indexOf(currentState)

succssorState = nodes.subList(0, c).shuffle().removeFirst()

if (successorState.cost() < currentState.cost()) then {

currentState = successorState

} else {

return currentState

}

}

}

Random Restart Hill-climbing
Search

● Performs a series of hill-climbing (or stochastic hill-
climbing) searches from randomly generated initial states

● Each search terminates when a local optimum is found,
when no discernable progress has been made for k steps
(stochastic hill-climbing), or after a fixed number of steps

● Saves the best result found so far from any of the
searches

● Can use either a fixed number of restarts or continue until
the best result has not been improved for a certain
number of restarts

Properties of Random Restart
Hill-climbing

● Complete with probability approaching 1 (given enough
restarts)

● If each hill-climbing search has probability p of success,
the expected number of restarts required is 1/p
● e.g., starting from a randomly generated eight queens state,

steepest descent hill-climbing gets stuck about 86% of the
time

● p ≈ 0.14 so we need approximately 7 restarts to find a goal
state

● However we may not know the probability of success for
a hill-climbing search

Properties of Random Restart
Hill-climbing

● If there are few local minima/maxima or plateaus,
random restart hill climbing will find a good solution
very quickly

● NP-hard problems typically have an exponential
number of local minima/maxima for the search to get
stuck on

● Despite this, a reasonably good solution can often be
found after a small number of restarts

● Can be more effective to limit the number of steps in
each hill-climbing search and perform more searches

Simulated Annealing Search

● Rather than restarting when stuck at a local optimum,
simulated annealing allows moves to states which are worse
than the current state

● Picks a move from the current state at random
● if the resulting state is better than the current state the move is

accepted
● otherwise the move is made with a probability which decreases

exponentially with the badness of the move and the “temperature”, T

● Probability of making moves to states which are worse than
the current state declines as the search progresses - controlled
by the annealing schedule

● Search terminates when T = 0

Simulated Annealing Algorithm

// pseudocode implementing simulated annealing search

public Node SimulatedAnnealingSearch(SearchProblem problem) {

Node currentState = new Node(problem.initialState())

Node successorState

while(T > 0) {

LinkedList<Node> nodes = currentState.expand(problem.operators())

succssorState = nodes.shuffle().removeFirst()

if (successorState.cost() < currentState.cost()) then {

currentState = successorState

} else{

// Replace currentState with successorState with probability

// e**(­(successorState.cost() – currentState.cost())/T)

}

// Decrement T according to the annealing schedule

}

}

Properties of Simulated Annealing

● If the annealing schedule lowers T slowly
enough, simulated annealing is complete and
optimal

● However finding an optimal (or even a very
good) solution may take a long time

● Simulated annealing has been used to solve
VLSI design problems, factory scheduling and
other large-scale optimisation problems

Genetic Algorithms

● Inspired by natural selection
● Considers a set of k states (‘population’) at a time rather

than a single current state
● Starts with a set of k randomly generated initial states
● Combines (parts of) states (‘individuals’) in the population

to produce new states (‘offspring’)
● Offspring may either replace the current population, or

the best of the offspring may replace the worst of the
current population

● Algorithm halts when either the goal is found or after a
given number of iterations (‘generations’)

State Representation and
Evaluation

● Individuals are represented as strings over a finite
alphabet - usually {0,1}, e.g., states in the eight
queens problem can be encoded in 24 bits

● The value of each individual is computed using a
fitness function which returns higher values for better
states, e.g, the number of non attacking queens

● k pairs of individuals are then selected to ‘reproduce’
- probability of selection is often taken to be
proportional to the fitness value

● Some individuals may be selected multiple times and
some not at all

Crossover and Mutation

● For each pair, a crossover point is randomly chosen from the
positions in the string

● Offspring are then created by crossing over the parent
strings at the crossover point, e.g. the first child gets the first
3 digits from the first parent and the remaining digits from the
second parent

● Each location in the offspring is subject to random mutation
with a small probability

● The offspring combines part solutions from each parent and
possibly some variation

● (Some of) the offspring then replace (some of) the parent
population and the next generation begins

Example: Eight Queens GA

Example: Eight Queens Crossover

Properties of Genetic Algorithms

● Key advantage of GAs is the crossover operation

● Useful information can be passed between k different solutions

● If the initial population is random, GAs (like simulated annealing)
make large moves in the state space initially, and smaller moves later
on when the individuals are quite similar

● Intuitively crossover combines substrings which have evolved
independently to solve parts of the problem, raising the granularity of
the search (schema theory)

● GAs work best when schemas correspond to meaningful components
of the solution - requires careful engineering of the representation

Summary

● Unlike (some) uninformed search techniques, local
search techniques are usually incomplete in practice

● However they can successfully be applied to
problems which are too large for systematic search
techniques (uninformed or informed), e.g, where the
number of operators is large

● Often capable of finding good solutions in a
reasonable amount of time

● GAs are often out-performed by simpler stochastic
hill-climbing techniques

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

